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Frequently a photograph received from a spacecraft will be “smeared” by some
process, e.g., by camera motion. Algebraically such smearing can be represented
as p = of, where ¢ is the true picture, p is the received picture, and f is the smearing
function. (p, o, and f are polynomials in two variables x and y.) Thus, in principle,
o can be recovered by multiplying p by 1/f. However, there are problems involved
in computing 1/f; this paper investigates some of them.

l. Introduction

It is often the case that a photograph received from a
spacecraft will be “smeared” by some process, e.g., by the
motion of the camera while the shutter is open. In this
article we will study one aspect of the problem of smear
compensation.

We assume the original picture is uniformly sampled,
and thereby discretized into cells which are labeled with
coordinates (a,b); we shall represent the picture by a
polynomial in two abstract variables x,y:

a(xy) = Z up XY’

ab

This representation means simply that the pixel with
integer coordinates (a,b) has brightness level o, We
further assume that the smearing process can be repre-
sented by a point-smear polynomial f(xy), i.e., that the
smeared version of the original picture is given by
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p(x.y) = o(xy) f(x.y)

(In particular, f(x,y) itself represents the smeared version
of the “unit impulse signal,” o(x,y) = 1.) If we are given
p (the received picture) and f (which can be computed
from knowledge of spacecraft geometry), we can hope to
recover the original picture o as

o = p(xy)/f(xy)

So we need a practical representation of the rational func-
tion p(x.y)/f(x.y).

One approach is to expand 1/f(x,y) as a power series in
x and y (with negative powers permitted). This power
series can then be multiplied formally by p to recover o.
However, in order for this procedure to give physically
meaningful results, it is necessary (for technical reasons
we shall omit) that the power series (a) has coefficients
approaching 0 as ja| or ib: > 0, or, even better, (b) con-
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verges for all values on the “unit torus” = {(x,y):|x| = |y|
= 1} (Condition (b) implies condition (a).) These two
conditions turn out to be equivalent to (a) f has only a
finite number of zeros on the unit torus; (b) f has no such
Zeros.

The purpose of this paper is then to study the zeros of
a polynomial on the unit torus.

Il. L-Polynomials

I want to examine the zeros of a polynomial f(x,y) in
two (complex) variables lying on the “unit torus,” that is,
the points (x,y), where |x| = |y| = 1 (this is the generaliza-
tion of the “unit circle” to two complex variables; I shall
call such zeros “unimodular”). We shall find that a certain
symmetry operation is useful in this context, and in fact
that certain “symmetric” polynomials always do have
roots.

First note the following: the function kx“y®f(x,y), where
k 5= 0 is a constant and a,b are integers, has exactly the
same zeros on the unit torus U? as does f (this is true even
when a or b is less than zero); for this reason we will call
two polynomials f,¢ equivalent, written f ~ g, if g =
kx®y?f. Tt will be convenient to include in our considera-
tions not only polynomials in x,y, but all functions of the
form x*y*f(x,y), where f is a polynomial function, and a,b
may be negative—that is, polynomials in xy, 1/x, and
1/y. Our notion of equivalence clearly extends to these
functions, which we will call L-polynomials. Every equiv-
alence class of L-polynomials has an obvious representa-
tive, namely, a polynomial having no factors of x or y.
That is, if f is an L-polynomial, multiply it (if there are
negative degree terms) or divide it (if the degrees of the
terms are all positive) by suitable powers of x and y to
achieve a function equivalent to f and having the above
italicized properties. This polynomial (which is only de-
termined up to a constant multiple) will be called the
reduced form of f, and any polynomial without factors of
x or y, reduced.

We introduce these definitions;

(a) The x-degree of f (an L-polynomial), written deg.f,
is the highest power of x occurring in f; likewise

deg,f.

(b) The x-subdegree sbdg,f is the lowest power of x
occurring in (the terms of) f; likewise sbdg,f.

(c) The range of x (in f), written rngf, is mgf =
deg,f — sbdg.f; likewise for rng,f.
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Note that if f is a polynomial, then sbdg.f is just the
largest power of x dividing f; in fact more generally, we
have for any L-polynomial f, x-s%8,f « y-svd8, 1« f is 3 reduced
form of f.

The set of L-polynomials form a ring, that is, the
product, sum, and difference of two L-polynomials is
another L-polynomial. In this ring we have a greatest
common divisor (GCD)) d of any two elements f.g; we
write d = (f,2). The GCD here is the usual GCD of poly-
nomials, but as in all rings, it is only defined up to a mul-
tiple by a unit; a unit is an L-polynomial u such that 1/u
is also an L-polynomial. Later we will need to work with
the GCD of L-polynomials, and we will have use for the
following:

If u is a unit in the ring L of L-polynomials, then u is a
monomial, that is, u = kx®y’.

Proof: Let 1/u = v, v an L-polynomial. Then uv = 1.
Let U,V be reduced forms of u, v, with U = x%fu and
V = xvy®v: then UV = x®yB+% Since U and V are
polynomials, the unique factorization of polynomials tells
us that U must be of the form kx%y?, as wellasV. Q.E.D.

The above has the following corollary: The GCD d =
(f.2) of two L-polynomials is only defined up to multiple
by a unit; but the units are kx?y?: thus d is defined up to
the equivalence of L-polynomials. Hence we would be

more correct to write: d ~ (f,2).

lll. The Adjoint Operation

We now introduce our main tool in investigating the
unimodular zeros of (L —) polynomials, an operation * on
L-polynomials which we call the adjoint, defined by:

fr(xy) = f(1/%, 1/9)

where the bar denotes complex conjugation, This opera-
tion simply replaces x by 1/x and y by 1/y, and conjugates
all the coefficients of f. Thus, f* is also an L-polynomial
in x,y. We also have:

(N ) =f

@ f+e=f+g

3) (fg)* = f*g*

(4) deg.f* = —sbdg.f (ditto y)
() (fe)* = (f*.g")
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The first four are clear. To prove the last statement,
suppose d divides f and g, with f = Fd, g = Gd, where
d, F, G are also L-polynomials. Then we have, using (3),

f* = F*d*, gt = G*d*
ie., d* divides f* and g*, ie., d* divides (f*,g*). In par-
ticular, putting d = (f,2), we get (f2)* divides (f*,g*).
Replacing f by f* and g by g* and using (1), we have then
also:

(f*.g*)* divides (f,g), and so (f*,g*) divides (f,g)*

Thus, (f.8)* and (f*,g*) divide each other, that is, they are
unit multiples of each other, or as we saw in Section II,

(f.8)* =~ (f*.g*). QED.

The connection of the unimodular zeros of f and the
adjoint operation lies in the following:

Proposition 1: If (x,y) = (a,8) is a root of f(x,y) = 0 on U?,
ie, f(a,8) = 0 and |a] = |8| = 1, then f*(a,8) = 0 also.

Proof: f*(«,8) = f(1/&, 1/B); but |a| = || = 1 means
1/a = a,1/8 = B,s0

f*(@B) = flaB) =0=0

Corollary: 1If f is an L-polynomial, then the unimodular
roots of f lie among the common roots of f and f*. Hence,
either these roots are finite in number, or f and f* have a
common polynomial factor.

Proof: We may assume f is reduced, and replace f* by its
reduced form g, since these have the same unimodular
roots. Then the zeros of f on U? are also zeros of g. It is
well known (Bezout’s theorem) that two polynomials in
x,y have either a common factor or otherwise only a finite
number of common roots; in the latter case, there are
a fortiori only a finite number of zeros of f on U=

IV. Self-Adjoint Polynomials

The previous proposition told us that if f and f* have
no (nontrivial) common divisor, that is, (f,f*) ~ 1, then f
has only a finite number of zeros on U2 If f has an infinite
number of zeros, then d ~ (f,f*) is not ~1 (that is, d is
not a monomial kx"y?). Let’s see how this d behaves under
the adjoint operation. We have:

d* ~ (ff)" = (ff*) = (Ff) = (ff*) =d
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That is, d is equivalent to its adjoint. This gives rise to the
Definition: An L-polynomial f is called self-adjoint if f*
~ f, that is, if f* = kx°y®f for some constant k == 0 and
integers a,b. The triple (k,a,b), which indicates how f must
be changed to get f*, we will call the translation character
of f.

Note that this definition entails that [k| = 1: forif r > 0
is the maximum absolute value of the coefficients in f,
then it is also that of f*, since these coefficients are con-
jugate to those of f. But the maximum absolute value of
the coefficients of kx“y*f is clearly |k|r: so |k|r = r and
'k| = 1. In particular, if f is a real L-polynomial (i.e., real
coefficients), then k is clearly also real and so k = =+1.

Here are some examples of self-adjoint polynomials:

(@) f=x+ 1:f* = 22 + 1 = x%x* + 1): so (ka,b)
= (1, — 2,0).

(b) f=ax® + eay: f* = ax? + e %y = e-tox2y?
(e*ay + ax?) so (ka,b) = (e*,—2, —1).

(c) For any L-polynomial g, f = g + g*; then f* = §,
and (k,a,b) = (1,0,0).

(d) For any L-polynomial g, f = g — g*; then f* = g*
—_— g = —f SO (k,a,b) = (_1)0)0>'

(e) For any L-polynomial gf = g + xg*; then f* = g*
+x'g = £x' (g + xg*): so (k,a,b) = (%£1,—10).

Other examples can be formed in this way.

Let's now see how self-adjointness behaves under
equivalence. We have:

Proposition 2: 1f f is self-adjoint with translation character

(k.a,b), then g = xx%yff is also self-adjoint, with transla-
tion character

g* = Xwoy ffr = dx ooy lkaty'f)

>«l>«|

k,a—2a,b—2ﬁ>

Proof:

= Aoy Pkey’ og €)

i
e

kxuvzaybx_'ﬁg

Q.ED.
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The above shows us that g ~ f and f self-adjoint — ¢
self-adjoint; further, if we are permitting complex coeffi-
cients, by appropriately choosing A, we can “normalize”
f so that its k is 1: in fact if k; is e*?, then choose A =ei®/2,
Then the k for g = A; is

X eAie/z
k= =1

If we are restricting to real coefficients, however (as when
f itself is real), then A will be real, A/A» = 1, and so k =
=1 is unchanged under equivalence: k is thus an invariant
of the self-adjoint equivalence class. We can also see that
there are two other invariants of this class: the translation
exponents a and b, while not invariant themselves, are
invariant mod 2 sincea — 2a =amod 2, b — 28 = b
mod 2. Thus, in the complex case, the vector [(a,b) mod 2]
of numbers mod 2 gives us an invariant of the self-adjoint
type of f, which we will call simply the character of f. If f
is real, k is also an invariant, and if we define € = 0 mod 2
fork = 1, € = 1 mod 2 for k = —1, then we have a
“character” for f consisting of three mod 2 numbers (,a,b).
These “characteristic vectors” for f depend only on the
equivalence class of f. Recall that the unimodular zero set
of f also depends only on its equivalence class; it should
not be surprising then that (as we shall see) the character
of f influences the behavior of its zero set.

Here is a table of real examples (in some sense minimal
ones) showing that every mod 2 vector (€,a,b) actually
occurs as the character of some polynomial:

Mod 2
Polynomial

€ a b
1 0 0 0

1
x2—1<orx—-—> 1 0 0

x
x+1 0 1 0
x—1 1 1 0
y+1 0 0 1
y—1 1 0 1
x+y 0 1 1
x—y 1 1 1
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Here now is how the character influences the zero set
of a self-adjoint f:

Proposition 3: If the character of a self-adjoint L-poly-
nomial f is not 0 (that is, the zero vector, mod 2), then f
has zeros on Uz

Proof: In the complex case we have seen that we may
assume k = 1; then

f(xy) = f(1/%,1/§) = f(x.y) for (x,y)eU*
But since f is self-adjoint,

frxy) = xy’flxy)  (k=1)

Hence,

flxy) = x"y"f(x,y)

Were f never zero on U2, we could write uniquely

flxy) = r(xy) * u(xy),

where r = |f| > 0 and u = f/r is of unit modulus, and
r and u are continuous functions of (x,y)eU?. We have then

fley) _
ey =T = e

Now, as (x,y) travels around any closed curve in the
unit torus U? wu will travel around the unit circle U an
integral number of times, by continuity, and hence u? will
travel around U an even integral number of times. But
if we let x travel once around the unit circle while holding
y = 1, x*y® goes a times around U, and likewise let x = 1
and y move around U, x%y® goes b times around U. Hence
a and b must both be even, i.e., the character (a,b) mod 2
is zero,

In the real case we have a simpler proof: for now f is
real when x and y are, i.e., when x and y are -=1. We have,
then, for such x and y,

fxy) = flxy) = kx'y"f(xy)

so f(xy) = 0 > kx'y® = 1. But if either a or b is odd, or
k = —1, we can clearly choose (x,y) = (=1, =1) so that
kx'y* = —1, which implies f = 0. Q.E.D.

V. The Case of Infinite Zeros

Henceforth, we are going to confine our attention to the
case when f has an infinite number of zeros on U?, which
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implies d = (ff*) is not ~1. We can strengthen this
statement to:

Proposition 4: f has an infinite number of zeros on U? iff
the self-adjoint L-polynomial d ~ (ff*) does; in fact, all
but a finite number of the zeros of f are zeros of d.

Proof: Putting f = Fd, f* = Gd, where F,G are also
L-polynomials, then

f* = F*d* ~ F*d and * = Gd
SO

G~ F*

Hence also (F,F*) ~ (F,G) ~ 1: so F and F* have no
common factor, and by the Corollary to Proposition 1,
F has only a finite number of zeros on U2 The zeros of f
(on U?) are the union of those of F and those of d. Q.E.D.

Thus, the zeros of f consist of those of the “self-adjoint
part” of f (that is, d), plus a finite number of other, iso-
lated, zeros; so henceforth we shall spend our time eluci-
dating the structure of the zeros of a self-adjoint poly-
nomial d. We already know that if d has non-zero char-
acter, it has zeros; the results below will actually show
that if d has any zeros, it has an infinite number.

Proposition 5: Let d be a self-adjoint L-polynomial; then
its zero set on U* consists of a finite number (possibly
zero) of real, closed curves on U2 If the algebraic curve
given by d(x,y) = 0 is non-singular, or, more generally, if
its singularities do not lie on U=, then these curves are
smooth and disjoint,

Proof: We will only prove this for the case when the
singularities are off U*—the full statement follows from an
overdose of algebraic geometry. In any case, the locus of
d = 0 in the complex projective plane* is (a) compact,
(b) outside of the singularities, a smooth orientable surface
M. The zeros of d on U* are simply all points of M satisfy-
ingx = 1/x,y = 1/y.

Let’s consider in more detail the transformation I of the
plane given by x > 1/x, y - 1/4. First of all, I takes M
into itself: for d(x,y) = 0 —» d*(x,y) = 0 (since d* ~ d

*The complex plane means here the set of all pairs (x,y) with x
and y complex; the real plane has x,y real. Thus, the real plane is
two-dimensional, but the complex plane is 4-dimensional (over the
reals). The real dimension is always twice the complex dimension;
thus, an algebraic curve over the complexes is two real dimensions,
although the very word “curve” means one-dimensional.
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and (xy)eU?), ie, d(1/%, 1/§) = 0, ie., d(1/%, 1/§) =
0, i.e,, (1/x, 1/y)eM. Second, the fixed points of I are
precisely the points of the unit torus, and so if we consider
I to be a mapping of M into itself, its fixed points are
precisely the zeros of d in U For any non-singular (finite)
point (a,8) of M (in particular, for (a,8) €U?, which was by
assumption non-singular), either x or y is an analytic func-
tion on M which is one to one on a neighborhood (in M)
of («,8): thus, we may examine the behavior of M and the
transformation I in a neighborhood (in M) of (a,8) by
examining either the x-values alone or the y-values alone.
(That is: either the x-values or y-values determine the
point in a neighborhood of (,8), so we may identify it
from this one value alone, as well as what I has done to it,
if I takes it into the same neighborhood.)

In particular, suppose (a,8)eU% so o] = |B] = 1,
I fixes (a,B), and x sends (a,8) to « and a neighborhood of
(a,8) in M to a neighborhood of « in the complex number
line C. The way I acts in this neighborhood in M is faith-
tully mirrored by the transformation I,:x - 1/% in C. This
I, fixes a (as it should, since I fixes (a,8) and everything is
mirrored faithfully in C), but also a smooth arc passing
through « in the x-plane, namely, all points x in a neigh-
borhood a for which |x| = 1; the same is thus true in M:
the inverse image of these fixed points of I, in C are fixed
peints of I, and are a smooth arc in M. Since they are fixed
by I, they are also in U* thus, we have shown that, if
(a,B)e MNU* (ie., is a zero of d in U?), then there is a
smooth arc passing through (a,8), entirely in M N UZ; also,
in our neighborhood of («,8) these arc’s points are the
only points in M NU? (again, because this is true of « in
C): Thus, MNU? consists locally of smooth arcs; since it
is also compact (both M and U? are so in the projective
plane), then M NU* must be a finite collection of disjoint
smooth closed (real) curves.

As an easy Corollary: if d is self-adjoint and has one
zero on U2 then it has an infinite number. Also: d has no
isolated zeros. (These apply, for example, to any d with
non-zero character.)

VI. Winding Numbers

Let us think of the smooth closed curves of M NU? as
curves on U’. We would like to investigate a bit more
thoroughly how these curves are situated in U2, If then «
is any closed curve on U, it may be parameterized as

a(u) = (x(u), y(u)), x(u) = jy(u)| = 1
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and u is a parameter, which we may assume travels
around the unit circle once as «(u) travels the closed curve
once. We then have the winding numbers of «, W(a) =
the number of times x(u) goes around U (in the positive
sense) as u goes around U once (also in the positive sense);
likewise for W («).

Note that we have chosen an orientation of « in this
definition, namely, via our parameterization. If we were
to change the parameterization by u — u, the curve would
be traced in reverse, likewise x(u) and y(u), and so both
winding numbers would negate. These winding numbers
are, however, well defined mod 2, independent of this
choice of orientation.

Likewise, if we have a collection A = {a;} of closed
curves (not necessarily disjoint) on U?, we may define
their total winding numbers

W.(4) = Z W(as)

and
W,(A) = Z Wy ()

The orientations of the various «; may be chosen in
various ways, so the total winding numbers are not well
defined (even up to sign); they are still, however, well-
defined mod 2.

A winding number may be computed in various ways;
we shall do it as follows: W, («) = the number of times
x(u) passes any fixed point 8eU in the positive direction,
counting — 1 for passing it in the negative (i.e., clockwise)
direction. Modulo 2, this total sum of +1’s and — Ls is just
the number of times x(u) takes any particular value 9eU
on the curve «: that is, the number of roots u of x(u) = 4.

In particular, let A = {«;} be the collection of curves
given by the equation d = 0 on U?, where d is a self-
adjoint L-polynomial with translation character (k,a,b).
If we put x = 6 in d, we get an L-polynomial

Yo(y) = d(6.y)

an L-polynomial in y alone. The total mod 2 winding
number W,(A) is the number (mod 2) of points on A with
x = 8, i.e., it is just the number of solutions of Y.(y) = 0
with ‘y| = 1. We have now the following two lemmas:

Lemma 1. Y.(y) is an L-polynomial which for general ¢
has the same degree, subdegree, and range as that of y
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in d. Furthermore, Y is self-adjoint in y, with translation
monomial k§y®.

Proof: The first statement is clear (if we just choose ¢ to
be a non-root of the coefficients of the highest and lowest
powers of y). As to the second:

Y*(y) = (by definition) Y(1/§) = d(8,1/%)
= d(1/8,1/7) (since || = 1) = d*(4,y)
= koyd(8,y) = koy® Y(y) Q.ED.

Lemma 2. If Y(y) is a self-adjoint L-polynomial of range
r, then the number of roots of Y on the unit circle |y| = 1
is = rmod 2.

Proof: The non-zero roots of Y are just the roots of the
reduced form of Y: y—*%,Y+Y(y); also r is the degree of
this reduced form. Hence we may assume Y is already
reduced, and deg,Y = r. In this case Y* = Y(1/f) =
ky~"Y. Since the roots of Y are non-zero (it is reduced, after
all, and has no y-factors), any root y, inside the unit circle
corresponds to a root 1/7, of Y*, and hence also Y, outside
the unit circle. Thus, the total number of roots of Y is
(the # on |y| = 1) + 2 + (# roots inside |y| = 1); this is,
of course, also the degree of Y (double roots are counted
twice). Hence we have:

r= # roots on |y| = 1 mod 2 Q.E.D.

Applying this to Ye(y) = d(8,y), we have
W,(A) = # roots of Y,(y) on |y| = 1 =rng,Y(y)
= mg,d = deg,d — sbdg,d
= —deg,d — sbdg,d mod 2

If now (k,a,b) is the translation character of d, then note
that b = —deg,d —sbdg,d: for the higher power of y in
d, that is, deg,d, becomes the lowest power —deg,d in d*,
that is, the subdegree term; to bring the subdegree term
of d down to y=,% we must clearly multiply by
y-dex d-svde d that is, b = —deg,d—sbdg,d.

Thus, we have, finally,
W(A)=bmod?2
Similarly, we find W ,(A) mod 2, and thus our final
Proposition 6: The winding numbers (W, W,) of the zero

set (in U?) of a self-adjoint L-polynomial d with (complex)
character (a,b) satisfy:

(W,,W,) = (b,a) mod 2
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